Combining Task and Dialogue Streams in Unsupervised Dialogue Act Models

نویسندگان

  • Aysu Ezen-Can
  • Kristy Elizabeth Boyer
چکیده

Unsupervised machine learning approaches hold great promise for recognizing dialogue acts, but the performance of these models tends to be much lower than the accuracies reached by supervised models. However, some dialogues, such as task-oriented dialogues with parallel task streams, hold rich information that has not yet been leveraged within unsupervised dialogue act models. This paper investigates incorporating task features into an unsupervised dialogue act model trained on a corpus of human tutoring in introductory computer science. Experimental results show that incorporating task features and dialogue history features significantly improve unsupervised dialogue act classification, particularly within a hierarchical framework that gives prominence to dialogue history. This work constitutes a step toward building high-performing unsupervised dialogue act models that will be used in the next generation of task-oriented dialogue systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Verbal and Nonverbal Features to Overcome the "Information Gap" in Task-Oriented Dialogue

Dialogue act modeling in task-oriented dialogue poses significant challenges. It is particularly challenging for corpora consisting of two interleaved communication streams: a dialogue stream and a task stream. In such corpora, information can be conveyed implicitly by the task stream, yielding a dialogue stream with seemingly missing information. A promising approach leverages rich resources f...

متن کامل

In-Context Evaluation of Unsupervised Dialogue Act Models for Tutorial Dialogue

Unsupervised dialogue act modeling holds great promise for decreasing the development time to build dialogue systems. Work to date has utilized manual annotation or a synthetic task to evaluate unsupervised dialogue act models, but each of these evaluation approaches has substantial limitations. This paper presents an incontext evaluation framework for an unsupervised dialogue act model within ...

متن کامل

Learning Dialogue Management Models for Task-Oriented Dialogue with Parallel Dialogue and Task Streams

Learning dialogue management models poses significant challenges. In a complex taskoriented domain in which information is exchanged via parallel, interleaved dialogue and task streams, effective dialogue management models should be able to make dialogue moves based on both the dialogue and the task context. This paper presents a data-driven approach to learning dialogue management models that ...

متن کامل

A Tutorial Dialogue System for Real-Time Evaluation of Unsupervised Dialogue Act Classifiers: Exploring System Outcomes

Dialogue act classification is an important step in understanding students’ utterances within tutorial dialogue systems. Machinelearned models of dialogue act classification hold great promise, and among these, unsupervised dialogue act classifiers have the great benefit of eliminating the human dialogue act annotation effort required to label corpora. In contrast to traditional evaluation appr...

متن کامل

Understanding Student Language: An Unsupervised Dialogue Act Classification Approach

Within the landscape of educational data, textual natural language is an increasingly vast source of learning-centered interactions. In natural language dialogue, student contributions hold important information about knowledge and goals. Automatically modeling the dialogue act of these student utterances is crucial for scaling natural language understanding of educational dialogues. Automatic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014